If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9x^2+1.5x+11=0
a = -4.9; b = 1.5; c = +11;
Δ = b2-4ac
Δ = 1.52-4·(-4.9)·11
Δ = 217.85
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1.5)-\sqrt{217.85}}{2*-4.9}=\frac{-1.5-\sqrt{217.85}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1.5)+\sqrt{217.85}}{2*-4.9}=\frac{-1.5+\sqrt{217.85}}{-9.8} $
| 1/5y=-30 | | 0.18-2’m=7.78 | | 5/11(3x+8)=-8 | | 4-4q=10-2q | | 10n+22=92 | | 3+4c=15* | | 2-4v=11.96 | | 5 (3x+8)=-811 | | n+12.5=-0.3 | | 2x(x-20)=80 | | 3r-15=6r+12 | | 2f+2.6=8.78 | | 1-5q=-6q+2 | | m(m-3)=-0 | | 10•3^x=40•2^x | | c/4-2.4=1.61 | | -7n-1=-2n+2-6n | | 3/5c-6=7.2 | | (3y-5)(2y-7)(4y+1)=0 | | -36+w=55 | | 8x+7x-90=180 | | 9q-5=76 | | (a-2)(2a=1)=0 | | 4a-1.4=2.6 | | 9+h=-9-8h | | 3/2u-5=-1/2u | | 12x=3,000-4,200 | | 2(q-0.I)=3(0.3-q) | | 3×x-14=46 | | 4h+22=94 | | 7^2x+2=(1/49)^x+5 | | -9=-3+3z |